Федеральное государственное автономное образовательное учреждение высшего образования

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ВЫСШАЯ ШКОЛА ЭКОНОМИКИ"

HPC TaskMaster – система мониторинга эффективности задач на суперкомпьютере

Функциональные возможности

Подп. и дата						
Инв. Nº дубл.						
Взам. Инв. №						
Подп. и дата						г. Москва, 2024
Подп						Функциональные возможности HPC TaskMaster
	Изм.	Лист	№ докум.	Подп.	Дата	Функциональные возможности птС тазкмаster
٦.	Разр		Мишенин		 8.12.2024	Лит. Лист Листов
Инв. № подл.	Прос		Козырев		9.12.2024	1 8
ΝōΙ	Прос	3.	Чулкевич		9.12.2024	
,HB.		онтр.				
Z	Утв		Костенецкий		9.12.2024	

АННОТАЦИЯ

«HPC TaskMaster – система мониторинга эффективности задач на суперкомпьютере» (далее – Система, HPC TaskMaster) предназначена для автоматического определения неэффективных задач, запущенных на вычислительном кластере (суперкомпьютере).

Данный документ содержит функциональные возможности Системы и описывает основную информацию по архитектуре и эксплуатации.

Подп. и дата							
Инв. № дубл.							
Взам. Инв. №							
Подп. и дата							
подл.							
Инв. № подл.	Изм.	Лист	№ докум.	Подп.	Дата	Функциональные возможности HPC TaskMaster	Лист 2
	 113111.	711101	» - докум.	110діі.	дага		ļ —

Оглавление АННОТАЦИЯ ______2 ОБЩИЕ СВЕДЕНИЯ......4 1.1. 1.2. 2. ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ.......5 2.2. 3. 3.1. 3.2. ИНФОРМАЦИЯ ПО ЭКСПЛУАТАЦИИ......

Инв. Nº дубл. δ Инв. Взам. Тодп. и дата подл.

Š

Лист № докум. Подп. Дата

Функциональные возможности HPC TaskMaster

Лист

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Наименование программного обеспечения

Полное наименование программного обеспечения: «HPC TaskMaster – система мониторинга эффективности задач на суперкомпьютере».

Сокращенное наименование программного обеспечения: HPC TaskMaster. В рамках настоящего документа употребляются также термины: Система.

1.2. Область и особенности применения

HPC TaskMaster представляет собой систему для мониторинга эффективности задач, выполняемых на суперкомпьютере.

Основная функция Системы — сбор и анализ показателей утилизации вычислительных ресурсов в процессе выполнения задач на суперкомпьютере. Основная функция обеспечивается следующим набором функциональных возможностей:

- сбор показателей использования CPU, GPU, оперативной памяти и файловой системы на вычислительных узлах суперкомпьютера;
- анализ собранных показателей и присваивание необходимых индикаторов и тегов;
- генерация вывода на основании индикаторов и тегов, который позволит сделать окончательных вывод о том, эффективно ли работала задача;
- веб-интерфейс для просмотра детальных сведений о задаче и показателей использования ресурсов;
- подсистема email-оповещений пользователей о неэффективных задачах;
- подсистема принудительной отмены неэффективных задач.

1нв. № подл.	. Подп. и дата	Взам. Инв. №	Инв. N <u>º</u> дубл.	подп. и дап

Изм.	Лист	№ докум.	Подп.	Дата

2. ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ

В рамках раздела функциональных характеристик приводится назначение и ключевые функции Системы.

2.1. Назначение Системы

HPC TaskMaster представляет собой состоящую из набора компонентов систему мониторинга эффективности задач, выполняемых на суперкомпьютере. Основное назначение Системы:

- сбор показателей об использовании вычислительных ресурсов в процессе выполнения задач на суперкомпьютере;
- анализ собранных показателей об использовании вычислительных ресурсов в процессе выполнения задач на суперкомпьютере;
- отображение состояния задач и результатов их анализа пользователям системы посредством web-интерфейса.

2.2. Ключевые функции Системы

Среди набора функций Системы ключевыми можно выделить следующие:

- функция сбора информации о поставленных в очередь, выполняющихся и завершенных задачах на вычислительном кластере;
- функция сбора вычислительных метрик задач;
- функция анализа метрик задач на наличие проблем для формирования индикаторов;
- функция анализа параметров задачи для присваивания тегов;
- функция анализа индикаторов и тегов для формирования вывода о неэффективной работе задачи;
- функция сбора статистики эффективности выполняемых задач по пользователям.

Подп. и датс	
инв. Nº дубл.	
Взам. Инв. Ие	
Подп. и дата	
в. № подл.	

Изм.	Лист	№ докум.	Подп.	Дата
Изм.	Лист	№ докум.	Подп.	Дат

3. АРХИТЕКТУРА

3.1. Основные компоненты и их лицензии

В таблице 1 приводится перечень используемых в работе Системы ключевых компонентов, их краткое описание и сведения о лицензиях.

Лицензия

Лист

Таблица 1. Ключевые компоненты Системы

Описание

Компонент

SLURM	отказоустойчивый и масштабируемый планировщик заданий с открытым исходным кодом для больших и малых кластеров Linux	GPL (открытое ПО)	
MySQL /	система управления базами данных		
 MariaDB	(СУБД), распространяемая как	GPL (открытое ПО)	
WallaDB	свободное программное обеспечение		
D (GOI	система управления базами данных	CDI (HO)	
PostgreSQL	(СУБД), распространяемая как	GPL (открытое ПО)	
	свободное программное обеспечение		
	open-source системный агент,		
Telegraf	предназначенный для сбора метрик	МІТ (открытое ПО)	
	или данных из системы, на которой он		
	установлен		
InfluxDB	система управления базами данных с	МІТ (открытое ПО)	
	открытым пекедпым кодом дыя		
	хранения временных рядов		
Grafana	платформа с открытым исходным	АGPLv3 (открытое ПО)	
Grarana	кодом для визуализации, мониторинга	AGPLV3 (открытое по)	
	и анализа данных		
Redis	быстрое хранилище данных типа	BSD (открытое ПО)	
Redis	«ключ-значение» в памяти с открытым	BSD (GIRPBITOC IIO)	
	исходным кодом		
]]	свободный фреймворк для веб- приложений на языке Python,	70)	
Django	использующий шаблон	ВSD (открытое ПО)	
	проектирования MVC		
D d	высокоуровневый язык	DGEL (HO)	
Python	программирования	PSFL (открытое ПО)	
	программирования		

Инв. № подл.		Изм. Лист	№ докум.	Подп.	Дата	Функциональные во	озможности HPC TaskMaster
одл.							
Подп. и дата							
Взам. Инв. №							
Инв		Python		высокоу програм	-	вый язык ания	PSFL (открытое ПО)
Инв. Nº дубл.		Django		приложе	ений н ующиі	еймворк для веб- а языке Python, й шаблон ия MVC	BSD (открытое ПО)
Подп.		Redis		-	начені	лище данных типа ие» в памяти с открытым ом	BSD (открытое ПО)
Подп. и дата		Grafan	_		ля виз	ткрытым исходным уализации, мониторинга ных	AGPLv3 (открытое ПО)
		Influxl		открыть	ім исх	одным кодом для пенных рядов	МІТ (открытое ПО)

3.2. Схема взаимодействия компонентов

На рисунке 1 представлена схема взаимодействия основных компонентов Системы, приведенных ранее в таблице 1.

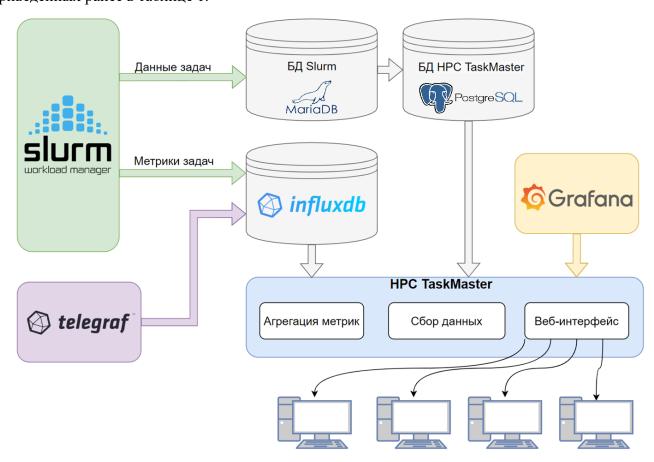


Рисунок 1. Взаимодействие ключевых компонентов системы

Инв. № дубл.	
Взам. Инв. №	
Подп. и дата	
Инв. Nº подл.	

Подп. и дата

Изм.	Лист	№ докум.	Подп.	Дата

4. ИНФОРМАЦИЯ ПО ЭКСПЛУАТАЦИИ

4.1. Системные и аппаратные требования

Для эксплуатации программной системы в рабочем режиме необходимо подготовить вычислительную машину — сервер, отвечающий аппаратным характеристикам, указанным в таблице 2, а также имеющий набор системных компонентов, указанных в таблице 3.

Таблица 2. Аппаратные требования

Компонент	Минимальные требования	Рекомендуемые требования
Объем оперативной памяти	8 ГБ	32 ГБ
Объем дискового пространства	2 ГБ	3 ГБ
Процессор	2 ГГц	2 ГГц
Подключение к сети Интернет	512 Кбит/с	2 Мбит/с

Таблица 3. Требования к системным компонентам

Компонент	Требование
Операционная система	Linux
SLURM	версия 19.05 и выше
PostgreSQL	версия 17.2
MySQL / MariaDB	версия 10.4 и выше
MySQL / Manabb	или версия Community 8.0 и выше
Telegraf	версия 1.17 и выше
InfluxDB	версия 1.8.2
Grafana	версия 7.5.1
Redis	версия 3.2 и выше
Python	версия 3.5 и выше, а также компоненты окружения
Django	версия 3 и выше

Изм.	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Инв. Nº дубл.

Взам. Инв. №

Подп. и дата

Инв. № подл.